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Abstract—Ternary Content-Addressable Memory (TCAM) is a
powerful tool to represent network services with line-rate lookup
time. There are various software-based approaches to represent
multi-field packet classifiers. Unfortunately, all of them either re-
quire exponential memory or apply additional constraints on field
representations (e.g, prefixes or exact values) to have line-rate
lookup time. In this work, we propose alternatives to TCAM and
introduce a novel approach to represent packet classifiers based
on ternary bit strings (without constraining field representation)
on commodity longest-prefix-match (LPM) infrastructures. These
representations are built on a novel property, prefix reorderability,
that defines how to transform an ordered set of ternary bit strings
to prefixes with LPM priorities in linear memory. Our results are
supported by evaluations on large-scale packet classifiers with
real parameters from ClassBench; moreover, we have developed
a prototype in P4 to support these types of transformations.

I. INTRODUCTION

Packet classification is a core functionality for representing
packet processing programs on the data plane. There are two
major program categories: traffic forwarding between certain
points in a communication network and service policies that
guarantee desired traffic properties or track network behav-
ior during forwarding (e.g., quality-of-service, access-control,
firewall). Both can be captured as tuple matching with action
sets, but they have distinct behavior and may rely on different
invariants; e.g., forwarding tables can be represented by pre-
fixes with priorities based on longest-prefix-match (LPM) while
policies can consider general multi-field classifiers; forwarding
tables may change frequently, while policies representing
economic models or specific traffic signatures are designed
mostly a priori. In this work, we concentrate on policies in
the second category based on multi-field packet classifiers.

It is easier and more efficient to represent prefixes with
LPM priorities than to use multi-field packet classifiers in
software-based approaches [1]. Complexity bounds derived
from computational geometry imply that a software-based
packet classifier with N rules and k ≥ 3 fields uses ei-
ther O(Nk) space and O(logN) time or O(N) space and
O(logk−1 N) time [2] , which makes them either too slow or
too memory-intensive even with few prefix-fields.

Software-based approaches become even worse if classifica-
tion rules are represented as general ternary bit strings, which
is extremely useful in many applications [3], [4], [5]. Ternary
content-addressable memory (TCAM) was introduced to over-
come performance limitations of software-based solutions to

represent multi-field packet classifiers and add a new level of
expressiveness [6]. Unfortunately, TCAMs are expensive and
power hungry [7], so TCAMs of a sufficient size are the de
facto standard for classifier implementations only in high-end
network elements [8], [9]. Most network elements efficiently
implement prefix classifiers with LPM priorities at line-rate.

In this work, we explore alternatives to TCAMs and other
software-based approaches and show how to represent multi-
field packet classifiers on commodity LPM infrastructures
(transparently to them) with line-rate performance. Various
approaches to represent multi-field packet classifiers on LPM
infrastructures exist, but all of them impose additional con-
straints on how fields are represented (e.g., prefixes or exact
values) and most do not achieve desired worst-case guaranteed
lookup time [10], [2], [11], [12]. Unlike prior art, we do
not apply additional constraints on field representations and
assume that classifier rules are ternary bit strings with general
priorities as in TCAMs. We do not propose a specific classifier
implementation but rather define an abstraction layer that
chooses a subset of bit indices to be used in the lookup process.
A classifier based on these bit indices can be transparently
represented by other schemes, both in hardware and software.

The paper is organized as follows. Section II introduces
the model; Section III, a novel structural property, prefix re-
orderability, with an optimal algorithm that transforms a given
classifier into a prefix LPM classifier without extra memory (if
possible). In Sections IV and V we show how to represent non-
prefix-reorderable classifiers on existing LPM infrastructure
without and with extra memory. Since classification width
supported by LPM infrastructures is usually limited to 32 or
128 bits, in Section VI we show how to represent much wider
classifiers on LPM infrastructures and study a composition
of prefix reorderability with another structural property, rule
disjointness (order independence [14]). Section VII discusses
dynamic updates. In Section VIII, we evaluate our approach on
ClassBench classifiers with real parameters [19]. Section IX
outlines implementation details on top of the P4 domain-
specific language [20]; we have released the code under an
open source license. Section X discusses related prior art, and
Section XI concludes the paper.

II. MODEL DESCRIPTION

In this section, we provide formal definitions for further
exposition, starting with the basic notions of a packet header
and classifier. A packet header H = (h1, . . . , hw) is a978-1-5090-6501-1/17/$31.00 c⃝2017 IEEE



sequence of bits: each bit hi ∈ H has a value of either zero
or one, hi ∈ {0, 1}, 1 ≤ i ≤ w. For example, (1 0 0 0) is a
4-bit header. A classifier K = {R1, . . . , RN}≺ is an ordered
(by ≺) set of rules, where each rule Ri = (Fi, Ai) consists
of a filter Fi and a pointer to the corresponding action Ai.
A filter F = (f1, . . . , fw) is a sequence of, again, w values
corresponding to bits in the headers, but this time the possible
bit values are 0, 1, or ∗ (“don’t care”). We illustrate classifiers
by a table as in Example 1, where Ri ≺ Ri+1 is implied.

Example 1: A classifier K on four bits (w = 4).

K #1 #2 #3 #4 Action
R1 0 1 0 0 A1

R2 0 ∗ ∗ ∗ A2

R3 1 0 1 ∗ A3

R4 1 ∗ 0 ∗ A4

A classifier’s main purpose is to find the action correspond-
ing to the highest priority rule matching a given header. A
header H matches a rule R if it matches R’s filter, and it
matches a filter F if for every bit of H the corresponding bit
of F has either the same value or ∗. The set of rules has a
non-cyclic priority ordering ≺; if a header matches both R
and R′ for R ≺ R′, the action of rule R is applied. E.g., in
Example 1 the header (0 1 0 0) matches both R1 and R2, but
A1 is applied. Filters F1 and F2 are disjoint if no single header
matches both of them. Otherwise, F1 and F2 intersect, and
rules have to be prioritized. Two rules intersect (are disjoint)
if their filters intersect (are disjoint). In Example 1, R1 and
R2 (as well as their filters) intersect (e.g., (0 1 0 0) matches
both filters), while R1, R3, and R4 are pairwise disjoint.

A classifier K is called a prefix classifier if in every filter
F ∈ K all 0s and 1s precede all ∗ bits, i.e., they match prefixes
of a header. A prefix classifier is called a longest prefix match
(LPM) classifier if for every two intersecting rules R1 and R2,
the one with the longer prefix in its filter takes precedence.
LPM does not necessarily mean that a longer prefix is higher in
the ordering: the constraint only concerns intersecting filters,
so in Example 1 the first three rules comprise an LPM classifier.

Two classifiers K1 and K2 are equivalent if they choose
the same action for every packet. Formally, for every header
H ∈ {0, 1}w H matches a rule in K1 iff it matches a rule
in K2, and if H does match R1 = (F1, A1) ∈ K1 and R2 =
(F2, A2) ∈ K2 then A1 = A2.

III. PREFIX-REORDERABLE CLASSIFIERS

Our main objective is to find representations of classifiers
with general priorities on commodity LPM infrastructures
transparently to their implementations. To achieve this, we
proceed in two steps: (1) reorder bit indices of ternary bit
strings to transform them into prefixes (still with original
priorities, not necessary LPM) and (2) convert the resulting
prefix classifier (with general priorities) to an equivalent LPM
classifier. Here we assume that the classification width w is at
most wLPM used in LPM infrastructures (e.g., 32 or 128 bits).
We will return to the case w > wLPM in Section VI.

A. Ternary bit strings to prefixes

In this subsection, we identify exact conditions when a
given classifier can be transformed by bit reordering into an
equivalent prefix classifier. Moreover, we present an algorithm
that constructs a required order.

Let B = (b1, b2, . . . , bk), k ≤ w, be a sequence of distinct
bit indices, 1 ≤ bi ≤ w, that represents a desired bit order.
For a header H = (h1, h2, . . . , hw), we denote by HB the
(sub)header (hb1 , hb2 , . . . , hbk). E.g., for H = (0 1 0 0)
and B = (3, 2) HB = (0 1). Similarly, for a filter F we
have FB = (fb1 , fb2 , . . . , fbk), extending this notation to a
rule R = (F,A): RB = (FB , A). Finally, for a classifier
K = {R1, . . . , RN} the B-reordering of K, denoted KB , is
obtained from K as follows: (i) replace each rule R ∈ K
by RB ; (ii) for incoming packets, replace H by HB prior to
matching. E.g., in Example 1 for B = (3, 1, 2) we have

KB #3 #1 #2 Action

RB
1 0 0 1 A1

RB
2 ∗ 0 ∗ A2

RB
3 1 1 0 A3

RB
4 0 1 ∗ A4

To match H = (0 1 0 0) in this classifier, H is first
transformed to HB = (0 0 1), which matches RB

1 .
Note that for H ′ = (0 1 0 1) in the above classifier the

matching rule is also RB
1 , while in the original classifier it

would match R2 with a different action. Thus, K and KB are
not equivalent in general. Equivalence is obviously preserved,
however, when no bits are omitted.

Observation 1: For every classifier K on w bits, if B is a
permutation of (1, . . . , w) then K is equivalent to KB .

We call a classifier K on w bits prefix-reorderable if there
exists a permutation B of (1, . . . , w) such that KB is a prefix
classifier (here KB is always equivalent to K).

Example 2: Classifier from Example 1 is not prefix but
prefix-reorderable: for B′ = (1, 3, 2, 4) we have

KB′
#1 #3 #2 #4 Action

RB′
1 0 0 1 0 A1

RB′
2 0 ∗ ∗ ∗ A2

RB′
3 1 1 0 ∗ A3

RB′
4 1 0 ∗ ∗ A4

Unfortunately, not every classifier is prefix-reorderable.
Example 3: Consider the following classifier:

K #1 #2 Action
R1 0 ∗ A1

R2 ∗ 0 A2

The key to prefix-reorderability criteria lies in the reason
why Example 3 fails. Consider a filter F = (f1, . . . , fw);
denote by exact(F ) the set of bit indices i such that fi ̸= ∗;
we extend exact to rules as exact((F,A)) = exact(F ). In
Example 3 we have exact(R1) = {1}, and exact(R2) = {2},
but in a prefix classifier ∗ must follow 0s and 1s in FB .

Observation 2: For any filter F on w bits and any permuta-
tion B of (1, . . . , w), if FB is a part of a prefix classifier, then
indices from exact(F ) must precede in B all other indices.



Algorithm 1 perm(K)

1: E′
1, . . . , E

′
|K| ← sort by size(exact(K))

2: B ← sort(E′
1)

3: for i ∈ {1, . . . , |K| − 1} do
4: if E′

i ̸⊆ E′
i+1 then

5: return NO
6: B ← B, sort(E′

i+1 \ E′
i)

7: B ← B, sort({1, . . . , w} \ E′
|K|)

8: return YES(B)

In Example 3, we cannot satisfy Observation 2 for both
filters at once. This generalizes to any two filters with
exact(F1) = E1 and exact(F2) = E2 such that there exist
x ∈ E1\E2 and y ∈ E2\E1, i.e., E1 ̸⊆ E2 and E2 ̸⊆ E1. The
next theorem states that to require either E1 ⊆ E2 or E2 ⊆ E1

is actually sufficient. The criterion is naturally formulated in
terms of the structure of exact(K) = {exact(R) : R ∈ K}.

Theorem 1 (chain criterion): A classifier K is prefix-
reorderable iff for every E1, E2 ∈ exact(K) either E1 ⊆ E2

or E2 ⊆ E1 holds, i.e., exact(K) can be reordered to form
a “chain”: Ei1 ⊆ Ei2 ⊆ . . . ⊆ Ei|K| . The permutation of bit
indices can be found in O(|K| · w) time (if one exists).

Proof: (⇒) Necessity follows by the observation above:
if we have x ∈ Ei \ Ej and y ∈ Ej \ Ei for some i, j, and
a B-reordering of K is a prefix classifier, then both y must
precede x in B and x must precede y, a contradiction.
(⇐) Sufficiency. We need to present a permutation of bits

that leads to prefix representations of all rules. We claim that
Algorithm 1 constructs such a permutation or returns NO if
the theorem’s assumption does not hold. First, by assumption
exact(K) ordered by the size of |Ei| is a chain, i.e., E′

i ⊆ E′
i+1

for all i, so the check on line 4 never succeeds. Next, since
E′

1 ⊆ . . . ⊆ E′
|K|, after m iterations of the loop on line 3

B represents a permutation of E′
m. Finally, for every i in

the resulting permutation, all bits from E′
i precede all bits

from {1, . . . , w} \ E′
i since they get mapped later. Thus, B

turns the classifier K into a prefix one. Algorithm 1 needs
O(|K|·w) operations to construct the set exact(K); sorting can
be done in time O(w+ |K|) with radix sort, any set-theoretic
operation (including sorting) requires O(w) time, and the loop
has |K| − 1 iterations of time O(w) each.

Note that in Example 3 the set exact(K) = {{1}, {2}}
is not a chain. Algorithm perm exploits the criterion (Theo-
rem 1) to construct a permutation of bit indices that results
in a prefix-reorderable classifier, if one exists. To illustrate
the behavior of perm, consider again the classifier K from
Example 1. Here, if sorted by sizes, we have exact(K) =
{{1}, {1, 3}, {1, 2, 3}, {1, 2, 3, 4}}. Line 2 assigns B = (1).
On the first iteration, we have E′

i = {1} and E′
i+1 = {1, 3},

thus B = (1, 3). On the second iteration, E′
i = {1, 3},

E′
i+1 = {1, 2, 3}, so now B = (1, 3, 2). Line 7 adds the last bit

index 4, and the algorithm returns B = (1, 3, 2, 4), leading to
the same prefix classifier as in Example 2. Algorithm perm can
now be used to find the equivalent prefix classifier if it exists;
we let general to prefix(K) = NO if perm(K) = NO and
general to prefix(K) = KB if perm(K) = YES(B).

Algorithm 2 prefix to lpm(K)
1: while K is not LPM do
2: R1, R2 ← rules violating LPM
3: if | exact(R1)| < | exact(R2)| then ▷ R1 has a shorter prefix
4: K ← K \R2

5: else
6: K ← K \R1

7: return K

B. Prefix to LPM classifiers

Once a classifier is transformed to an equivalent prefix
classifier K′, the rule priorities of K′ do not necessary conform
to LPM priorities. In this part, we introduce a transformation of
a prefix classifier (with general priorities) to an LPM classifier
that does not add new rules and works in time O(|K| · w).

Example 4: Consider a prefix classifier K0:

K0 #1 #2 #3 #4 Action
R1 0 ∗ ∗ ∗ A1

R2 1 0 ∗ ∗ A2

R3 1 0 1 ∗ A3

Observe that the last two rules in K0 do not conform to LPM
since R2 intersects with R3, R2 has a shorter prefix, but
R2 ≺ R3. In this case, the last rule is just redundant and
can be removed since all packets matched by R3 will always
be matched by R2 with higher priority. As a result, we get an
equivalent prefix classifier that already has LPM priorities:

K1 #1 #2 #3 #4 Action
R1 0 ∗ ∗ ∗ A1

R2 1 0 ∗ ∗ A2

It turns out that it suffices to remove redundant rules of this
type to transform a prefix classifier into an LPM classifier, and
Algorithm 2 does this without increasing the number of rules.

Theorem 2: prefix to lpm transforms a prefix classifier
K into an equivalent LPM classifier K′ with |K′| ≤ |K|.
Moreover, it can be implemented in time O(w · |K|).

Proof: Since each iteration reduces the number of pairs of
rules that violate LPM order, and there are finitely many such
pairs, prefix to lpm terminates. To prove that it preserves
equivalence, consider two rules: Ri with prefix x and Ri+1

with prefix y; w.l.o.g. assume that |x| < |y|, so y = uz,
where |u| = |x|. There are two cases: (1) x = u and (2)
x ̸= u. In the former case, all packets matched by y would be
already matched by x; thus, rule Ri+1 is redundant and can
be removed. In the latter case, the rules do not intersect and
hence conform to LPM priorities.

A naive implementation of prefix to lpm, shown in Al-
gorithm 2, works in O(w ·|K|2) time. A faster approach can be
based on bit tries: start with an empty bit trie T . Sort rules in
non-decreasing order of exact(Ri) in O(|K|+w) time using
radix sort. Then, for every rule Ri in this order with 0-1 prefix
pi, check for every rule Rj such that its prefix pj lies on the
path from T ’s root to pi that Ri ≺ Rj ; if the check does not
fail, add pi to T ; if for some Rj pi = pj , leave in T the rule
with higher priority. Figure 1 shows an example of adding
the prefixes of K0 to this trie: the third rule’s prefix (shown in
gray) is not included since an earlier rule already has a shorter



Fig. 1. Adding prefixes of K0 to a binary trie.

prefix. The resulting classifier K consists of all rules whose
prefixes are left in T , together with the corresponding actions;
the theorem follows since we always keep only top priority
rules among intersecting ones.

In this section, we have shown how to transform prefix-
reorderable classifiers to LPM classifiers. The proposed trans-
formations, perm and prefix to lpm, are transparent to
internal implementations of LPM infrastructures. Next we
will see how to represent non-prefix-reorderable classifiers on
commodity LPM infrastructures.

IV. NON-PREFIX-REORDERABLE CLASSIFIERS
WITHOUT EXTRA MEMORY

We introduce two approaches for dealing with non-prefix-
reorderable classifiers. The first, which we consider in this
section, requires prefix reorderability only on a subset of rules,
exploiting the capability of a target architecture to perform
multiple LPM lookups at line-rate and leading to multiple
prefix-reorderable classifiers that are together equivalent to the
original classifier.

A. Groupwise reorderability

In most cases, target architectures are able to perform mul-
tiple lookups to the LPM infrastructure at line-rate. Hence, we
can partition rules into multiple prefix-reorderable classifiers
and look up a header in each group, combining the outcomes
to choose the highest priority rule as the final result. Since each
rule appears only in one group, no extra memory is required.

Example 5: Consider the following (non-prefix-reorderable)
classifier K that will be our running example in this section:

K #1 #2 #3 #4 Action
R1 0 0 0 ∗ A1

R2 0 0 1 ∗ A2

R3 ∗ 1 0 0 A3

R4 0 0 ∗ ∗ A4

R5 ∗ 0 1 ∗ A5

R6 ∗ 1 0 ∗ A6

R7 ∗ 0 ∗ ∗ A7

K can be split into prefix-reorderable classifiers K1 and K2:
K1 #1 #2 #3 #4 Action
R1 0 0 0 ∗ A1

R2 0 0 1 ∗ A2

R4 0 0 ∗ ∗ A4

R7 ∗ 0 ∗ ∗ A7

K2 #1 #2 #3 #4 Action
R3 ∗ 1 0 0 A3

R5 ∗ 0 1 ∗ A5

R6 ∗ 1 0 ∗ A6

Algorithm 3 mg(H) for K and {K1, . . . ,Kβ}
1: for i ∈ 1, . . . β do
2: R∗

i ← find match(Ki, H)

3: (F ⇒ A)← max1≤i≤β R∗
i , w.r.t ≺K

4: return A

Algorithm 4 min group partition(K)

1: E1, . . . , Eβ ← min chain partition(exact(K),⊆)
2: P ← ∅
3: for i ∈ {1, 2, . . . , β} do
4: Ki ← {R ∈ K : exact(R) ∈ Ei}
5: P ← P ∪ {Ki}
6: return P

If K1 and K2 both receive a header H = (0 0 1 0), the
former finds a matching rule R2 and the latter finds R5. The
multigroup implementation compares priorities of matched
rules and returns the one with higher priority, namely R2.

Algorithm 7 defines the lookup procedure to a multigroup
representation of a given classifier. Since all rules of the
original classifier K participate in the lookup process, and
the rule with highest priority is returned, the multigroup
representation of a given classifier is equivalent to K. Different
objectives can be optimized in the construction of multigroup
representations. We begin with a natural one that minimizes
the number of prefix-reorderable groups.

B. Minimizing the number of groups

Problem 1 (MINGR): Find a partition of the rules of a
given classifier K into a minimal number of disjoint prefix-
reorderable groups.

Intuitively, the resulting number of groups should depend
on the order in which rules are assigned to groups, and at first
glance it looks like a hard problem. However, according to the
chain criterion in Theorem 1, K′ is a prefix-reorderable subset
of K if and only if exact(K′) is a chain. Thus, instead of
partitioning K into prefix-reorderable groups we can partition
exact(K) into chains and then distribute rules to groups
according to the chain partition. This transformation changes
the problem in two important ways: first, the size of exact(K)
is usually much smaller than the number of rules in K; second,
most importantly, the minimal chain partition problem can be
solved in polynomial time with the help of order theory [21].

The min group partition algorithm for MINGR,
shown in Algorithm 4, exploits this idea. It calls the
min chain partition function that returns a minimal
size chain partition of a given ordered set based on
Dilworth’s decomposition theorem [22]. The implementation
of min chain partition shown in Algorithm 5 is based
on Fulkerson’s proof of Dilworth’s theorem [23].

Example 6: Fig. 2 illustrates Algorithm 4 with K from
Example 5. Starting from exact(K) = {{2}, {1, 2}, {2, 3},
{1, 2, 3}, {2, 3, 4}}, we order it by inclusion (Fig. 2a), con-
struct the corresponding bipartite graph (Fig. 2b), find a max-
imal matching, in this case {({2}, {1, 2}) , ({1, 2}, {1, 2, 3}) ,
({2, 3}, {2, 3, 4})} (shown on Fig. 2b and c), and construct
the chains by following this matching (Fig. 2c and d).



Fig. 2. Dilworth’s decomposition theorem: (a) original ordered set; (b) the
bipartite graph and its maximal matching; (c) chain decomposition in the
bipartite graph; (d) chain decomposition in the original graph.

Algorithm 5 min chain partition(X,≤)

1: G← bipartite graph, s.t. V (G) = E(G) = ∅
2: for x ∈ X do
3: G.add left vertex(xL)
4: G.add right vertex(xR)

5: for x, x′ ∈ X do
6: if x < x′ then
7: G.add edge(xL, x

′
R)

8: M ← max matching(G)
9:

10: H ← graph, s.t. V (H) = X and E(H) = ∅
11: for (xL, x

′
R) ∈M do

12: H.add edge(x, x′)

13: return connected components(H)

Theorem 3: The algorithm min chain partition finds
an optimal solution for the MINGR problem in time
O
(
| exact(K)|5/2 + |K|2w

)
.

Proof: For any prefix-reorderable partition of rules, by
Theorem 1 the set of exact(Ki) in each group Ki constitutes
a chain, leading to a chain partition. Vice versa, if we have
found a chain partition it suffices to group rules with respect to
this partition to get a prefix-reorderable partition of the same
size. Execution time of min pmgr is dominated by the call
to min chain partition, whose execution time is domi-
nated by max matching, so the Hopcroft–Karp algorithm [24]
yields running time O

(
|K|5/2

)
. It takes time O

(
|K|2w

)
to

construct the ordered set (exact(K),⊆): we have to compute
⊆ for every pair of |K| elements in this set.

C. Mixed representations

The number of parallel and serial lookups to the LPM
infrastructure at line rate is a property of the underlying target
architecture. In the worst case, one can construct artificial
instances of classifiers whose optimal representations require
an exponential (in width w) number of disjoint groups.

Theorem 4: There exists a classifier K with |K| =

O
(

1√
w
2

w
2

)
such that an optimal solution of the MINGR

problem requires exactly |K| groups.
Proof: The idea of this worst-case example is to construct

many filters with different sets of ∗ fields that are not subsets

of each other (and hence cannot be reordered). Consider the set
of ternary bit strings of length w

2 that contain exactly w
4 1s and

w
4 ∗. There are O

(
2

w
2 /

√
w
)

such strings. If we concatenate
each of them with a different string from {0, 1}w/2, we
get O

(
2

w
2 /

√
w
)

non-intersecting filters. Moreover, no two
of these filters can belong to the same prefix-reorderable
classifier, because their exact(Fi) sets are unequal due to
different “don’t care” positions in the first halfs of the filters.
Assigning to each filter a different action, we get a classifier
without redundant rules that cannot be prefix-reordered.

E.g., for the following classifier K with w = 8 we get six
different combinations of two ∗ and two 1 bits in the left half:

K #1 #2 #3 #4 #5 #6 #7 #8 Action
R1 ∗ ∗ 1 1 0 0 0 0 A1

R2 ∗ 1 ∗ 1 0 0 0 1 A2

R3 ∗ 1 1 ∗ 0 0 1 0 A3

R4 1 ∗ ∗ 1 0 0 1 1 A4

R5 1 ∗ 1 ∗ 0 1 0 0 A5

R6 1 1 ∗ ∗ 0 1 0 1 A6

While instances such as in Theorem 4 are rare, it often
happens in practice that a small number of “bad” rules form
a hard example and result in a large number of representing
groups. To allow our methods to cover non-prefix-reorderable
instances, in this section we introduce “mixed” representations
that implement a part of the original classifier in a traditional
way (e.g., in TCAM). The assumption is, again, that we can
look up both multigroup and traditional parts of a given
classifier and return the matched rule with highest priority,
so the mixed representation is again equivalent to K. We
assume that traditional representations are more expensive than
multigroup ones. Therefore, our objective is to maximize the
number of rules from a given classifier used in the multigroup
part, while still limiting the total number of groups.

Problem 2 (MAXCOV): Given a classifier K and a constant
β > 0, assign the largest possible subset of K’s rules into at
most β prefix-reorderable disjoint groups.

Note that both MINGR and MAXCOV problems do not
change the rules themselves and do not require additional
memory. The mixed setting allows us to exclude “bad” rules
from consideration when constructing a chain partition. To
exclude an element E from exact(K) we must move every rule
R with exact(R) = E to a traditional representation. Denoting
a set of all such rules as K[E], we can associate with every
removal of E a cost |K[E]|; the goal now is to minimize the
total cost. Algorithm 6 (max coverage partition) essen-
tially follows the same logic as min group partition, but
max coverage partition instead of a maximal matching
uses a minimal weight matching of a fixed cardinality and
introduces additional weighted edges on line 5. The cardinality
|M | of the matching determines the number of subgroups
(β = | exact(K)| − |M |). This lets MINGR minimize the
number of groups but MAXCOV simply bounds it while another
objective is being optimized.

Example 7: Fig. 3 shows max coverage partition on a
classifier K from Section IV-A with β = 1; numbers of rules
with each exact(R) are shown in top right corners (Fig. 3a).
In the bipartite graph on Fig. 3b, max coverage partition



Algorithm 6 max coverage(K, β)

1: G← weighted bipartite graph, V (G) = ∅, E(G) = ∅
2: for E ∈ exact(K) do
3: G.add left vertex(EL)
4: G.add right vertex(ER)
5: G.add edge(EL, ER, weight = |K[E]|)
6: for E,E′ ∈ exact(K) do
7: if E ⊂ E′ then
8: G.add edge(EL, E

′
R, weight = 0)

9: M ← min weight matching(G, | exact(K)| − β)
10: K′ ← {R ∈ K : (exact(R)L, exact(R)R) ∈M}
11: return K′

Fig. 3. max coverage partition example with β = 1: (a) ordered set
exact(K); (b) minimal weighted matching with additional edges; (c) resulting
chains; shaded regions show excluded rule subsets.

adds weighted edges connecting each E with itself in the other
part, with weight equal to the number of edges. Weighted
edges in the minimal partition correspond to removed rule
subsets, and the rest form the resulting chain (Fig. 3c).

Theorem 5: Algorithm max coverage partition pro-
duces an optimal solution for the MAXCOV problem in time
O(| exact(K)|2|K|+ |K|2w).

Proof: Correctness of max coverage partition fol-
lows from a one-to-one correspondence between solutions E
for the MAXCOV problem and weighted matchings ME of size
| exact(K)| − β in the bipartite graph with additional edges,
and, moreover,

∑
E∈exact(K)\E |K [E] | = w(ME). This fact is

clear by construction:
• every matching of size | exact(K)| − β corresponds to β

chains since in every chain, the number of vertices equals
the number of edges plus one (in particular, a chain of
size one corresponds to an unmatched vertex);

• by minimizing the weight of the matching, we minimize
the total number of excluded rules.

Time complexity is similar to min group partition, but
now max matching is replaced with min weight matching;
applying the augmenting paths approach, we get
| exact(K)|2|K| complexity since the maximal flow is
bounded by |K|, and there are | exact(K)| vertices.

Note also that an optimal algorithm for MAXCOV can be
used to find an optimal solution for the MINGR problem, with
an extra factor of log(|K|) for a binary search on β.

V. NON-PREFIX-REORDERABLE CLASSIFIERS
WITH EXTRA MEMORY

So far, all proposed representations did not change the
number of rules or rules themselves. However, in many cases
we can improve prefix reorderability by expanding some ∗ bits
into all possible combinations of 0s and 1s.

Example 8: Consider again the non-prefix-reorderable clas-
sifier from Example 3. We can cover only one rule with a
single prefix-reorderable group, but by expanding the ∗ bit in
R2 we get the following prefix-reorderable classifier:

K #1 #2 Action
R1 0 ∗ A1

R2 1 1 A2

R3 0 1 A3

Now R3 is covered by R1 and can be removed, so the end
result is a single group covering all rules.

This example shows that sometimes it is worthwhile to trade
a modest increase in memory footprint to cover more rules
by prefix-reorderable groups. Naturally, to avoid exponential
memory blowup one should control the expansion process,
so we incorporate into the MAXCOV problem a constraint m
on the number of expanded bits per rule. In the following
definition, K∗ denotes an expanded version of K′.

Problem 3 (MAXCOV-m): Given a classifier K, a constant
β > 0, and a maximal number of rules M , find the largest
subset K′ ⊆ K and a multigroup classifier K∗ equivalent to
K′ with |K∗| ≤ M such that K∗ can be split into at most β
prefix-reorderable groups.

In what follows we present a heuristic for MAXCOV-m.
The general idea is to start with a solution for the MAXCOV
problem (for some β) and then incorporate some of the
extra rules into the prefix-reorderable groups by applying bit
expansion. Specifically, we take a rule R (e.g., ((0 ∗ 1 ∗), A))
and a set of bit indices (e.g., {2}), and replicate R, replacing
∗ bits at given indices with all possible combinations of 0s
and 1s: R′ = ((0 0 1 ∗), A), R′′ = ((0 1 1 ∗), A). We denote
this procedure by expand(K, B), which applies bit expansion
to all bits with indices from B in every rule in K.

To understand how bit expansion can be useful for
solving the MAXCOV-m problem, consider β = 1. As-
sume that max coverage partition(K, 1) produced a max-
imum prefix-reorderable group K′ ⊆ K, so by Theorem 1
exact(K′) = E1 ⊆ E2 . . . ⊆ Ek. We denote the “extra”
rules represented in a traditional way as Kt = K \ K′.
Prefix-reorderability is determined solely by the structure of
exact(K′), so we can limit our consideration to Kt[E] =
{R ∈ Kt : exact(R) = E}. To add some Kt[E] to the
chain exact(K′), we need to expand some bits in Kt[E] and/or
possibly in K[Ei] so that the result is still prefix reorderable.
For example, if E ̸⊆ Ek (the maximal element of exact(K′)),
we merge Kt[E] and K′[Ek] into K′[Ek∪E] by replacing them
with expand(Kt[E], Ek ∪ E) and expand(K′[Ek], Ek ∪ E).

The algorithm expand and fit (Algorithm 7) greedily
selects Kt[E] to merge into a K′ so that |Kt[E]| is maximized,
since the less rules are left to a traditional representation (the
subset Kt) the better. To guarantee that bit expansion will not
increase memory above M , we limit the number of bits that
may be expanded in each rule by δ = log2(M/|K|); the algo-
rithm keeps track of already expanded bits from previous iter-
ations in K′ using #ex. The complexity of expand and fit

without calls to expand and min chain partition is O(w ·
| exact(Kt)| · log | exact(K′)|). An actual implementation of



Algorithm 7 expand and fit(K′,Kt, δ)

1: E ← sort exact(Kt) by 1/|Kt[E]|
2: for E ∈ E do
3: (E1 ⊆ . . . ⊆ Em)← min chain partition(K′)
4: i∗ ← max{i : E ̸⊆ Ei}
5: E∪ ← E ∪ Ei∗

6: if |E∪ \ E| > δ or #ex(Ei∗ ) + |E∪ \ Ei∗ | > δ then
7: continue
8: #ex(E∪)← max(|E∪ \ E|,#ex(Ei∗ ) + |E∪ \ Ei∗ |,#ex(E∪))
9: K′ ← (K′\K′[Ei∗ ])∪expand(K′[Ei∗ ], E∪)∪expand(Kt[E], E∪)

10: Kt ← Kt \ Kt[E]

11: return (K′,Kt)

the algorithm can postpone expand until the end by operating
on pairs (E, |K′[E]|) instead of actual rule sets; moreover, the
chain partition is usually known from from the preceding call
to max coverage partition.

Example 9: Consider the classifier K from Example 5 and
let β = 1 and δ = 1. The maximum prefix-reorderable
classifier K′ is K1 and Kt is K2. We have exact(K′) =
(E1 = {2}, E2 = {1, 2}, E3 = {1, 2, 3}); and exact(Kt) =
({2, 3}, {2, 3, 4}). First, expand and fit considers E =
{2, 3}; the largest Ei not containing E is E2 = {1, 2}, so
i∗ = 2. At this point, the check at line 6 succeeds, and K′

gets augmented with expand({R5, R6}, {1, 2, 3}). At line 6,
exact(K′) does not change but #ex({1, 2, 3}) is set to 1. Next,
algorithm considers E = {2, 3, 4} and selects i∗ = 3. Here
|E3 \E∪| = 1, but now #ex(E3) = 1, and the check at line 6
fails. The end result is the following:

K′ #1 #2 #3 #4 Action
R1 0 0 0 ∗ A1

R2 0 0 1 ∗ A2

R4 0 0 ∗ ∗ A4

R50 0 0 1 ∗ A5

R51 1 0 1 ∗ A5

R60 0 1 0 ∗ A6

R61 1 1 0 ∗ A6

R7 ∗ 0 ∗ ∗ A7

Note the redundancy in R50 that resulted from bit expansion.

VI. HOW TO CUT DOWN CLASSIFICATION WIDTH

We have already introduced several ways to represent
ternary bit strings with general priorities on commodity LPM
infrastructures. So far we assumed that classification width
w of the classifiers is at most the classification width wLPM

of an implementing LPM infrastructure. In reality, w can be
larger than supported by commodity LPM infrastructures (32 or
128 bits), so it is important to reduce classification width. The
work [14] already introduced a structural property of classifiers
called rule disjointness to tackle exactly this problem. A
classifier is rule-disjoint iff all its rules are pairwise disjoint.
If a given classifier K is still rule-disjoint on a subset of
bit indices B ⊂ {1, . . . , w}, the underlying lookup can be
based only on these B bits, and then only a false-positive
check is required on the remaining {1, . . . , w} \ B bits. Due
to disjointness, only a single rule can be matched, so the false-
positive check is not a lookup but just a bitwise comparison
of bits from {1, . . . , w}\B in the header and rule matched in
the KB classifier.

Example 10: Consider the following rule-disjoint classifier:

K #1 #2 #3 #4 Action
R1 0 1 ∗ 0 A1

R2 1 ∗ 0 ∗ A2

Note that only a single bit is enough to keep an equivalent
classifier KB rule-disjoint, i.e., for B = (1) we have

KB #1 Action
R′

1 0 false positive check(R1)
R′

2 1 false positive check(R2)

Similarly to prefix reorderability, requiring rule disjointness
on the entire classifier can be too restrictive, so multigroup rep-
resentations are natural for both characteristics. In particular
we want to have the width-bounded versions of the problems
that we have defined earlier (e.g., MINGR or MAXCOV). We
will not present here definitions for all of them (since they
have similar changes) and limit ourselves to the following:

Problem 4 (MAXCOV-w): Given a classifier K and two
positive numbers wLPM and β, find a maximal subset of K’s
rules that can be assigned to at most β groups, where each
group is prefix-reorderable and rule-disjoint on at most wLPM

bits.
At this point we need to understand the effects rule dis-

jointness and prefix reorderability have on each other. The
following two observations show that there is no interference.

Observation 3 (LPM-RD): If a classifier KB is prefix-reor-
derable, KB′

is also prefix-reorderable for any B′ ⊆ B.
Observation 4 (RD-LPM): Reordering of bit indices and

expansion of ∗ bits preserve rule disjointness.
Thus, it is safe to combine transformations reducing clas-

sification width (RD-step) with those that aim for prefix
reorderability (LPM-step) in any order. This is very important
because it allows us to decouple them from each other. The
only remaining question is in which order we should combine
these steps: RD-LPM or LPM-RD? It turns out that there is no
definite answer to this question.

Example 11: First, consider the hard classifier instance from
Theorem 4 for w = 4:

K #1 #2 #3 #4 Action
R1 ∗ 1 0 0 A1

R2 1 ∗ 0 1 A2

Assume that wLPM = 2, and we intend to minimize the
number of groups as in the PMGR problem. The RD-LPM
approach will produce one group because it will first switch to
K(3,4), which is prefix-reorderable. But the LPM-RD approach
will first split the rules into two groups, getting two groups
instead of one.

On the other hand, consider the following example:

K #1 #2 #3 #4 Action
R1 0 0 0 ∗ A1

R2 ∗ 0 1 0 A2

R3 1 0 ∗ ∗ A3

R4 ∗ 1 0 ∗ A4

Here the LPM-RD approach produces exactly two groups:
{R1, R3} and {R2, R4}, which are both order-independent
on the first and second bit respectively. Although RD-LPM
may use the same solution as LPM-RD, it is not required to



do so, and it may select the following two groups instead:
{R1, R2} and {R3, R4}. Each of those groups will require
two subgroups to be represented on an LPM infrastructure
producing four groups in the final representation. Thus, for
the MINGR-w problem different approaches can work better
for different instances of classifiers.

In the MAXCOV-w problem the objective is different: com-
plete coverage is not required, but the number of rules is
limited. The approach we suggest here is to greedily take
the largest possible subset which is both rule disjoint and
prefix-reorderable. It can be found found in two steps: first, we
find a rule disjoint group using a greedy algorithm from [14];
second, we run MAXCOV with β = 1 to find a maximal prefix-
reorderable subset. By Observation 4, the resulting group
possesses both properties. We call this algorithm RD-MC.
Another version of this algorithm, RD-MC-EXP, runs an
additional expand and fit step after MAXCOV.

Another curious interaction between LPM and RD happens
when we vary wLPM (infrastructure limits) in the RD-LPM
approach. On one hand, if RD reduces the number of bits,
it is easier for LPM to find prefix-reorderable decomposition
of rules (e.g., set wLPM = w/2 in Theorem 4 and get a |K|-
fold decrease in the number of groups). On the other hand,
RD itself may require a large number of groups, and the lower
we set wLPM, the more groups we will have. At the extreme,
the following classifier is prefix-reorderable, but RD yields 4
groups even if wLPM = 4:

K #1 #2 #3 #4 Action
R1 0 0 0 0 A1

R2 0 0 0 ∗ A2

R3 0 0 ∗ ∗ A3

R4 0 ∗ ∗ ∗ A4

VII. DYNAMIC UPDATES

Another recurring theme in classifier representations is the
support of dynamic updates. We have already mentioned
two major service categories: traffic forwarding and service
policies that represent economic models and traffic signatures
designed in advance (e.g., quality of service, access control,
firewall). Dynamic updates are not too important for the sec-
ond category; offline computation can be valid in most cases.
What if we still do need dynamic updates? Deletions and
insertions that maintain groupwise representations are simple.
If a new rule cannot be added to an existing group, or the
traditional part is full, the multigroup part can be recomputed.
Implementation of these cases is straightforward, so due to
space constraints we do not go into further details here;
the update procedure is similar to the one proposed in [14,
Section 7.2]. There are two important factors that make a
specific representation feasible: update resolution (that defines
which part of a classifier is affected) and update frequency.
Since there are cases when recomputation of a multigroup
representation is required, we prefer to limit applicability of
our representations only to the second group of services.

VIII. EVALUATION

To validate the proposed approach, we have run simulations
on classifiers from the Classbench benchmark [19] generated

Rules l = 16 l = 24 l = 32 l = 64 l = 104
β = 5 10 20 5 10 20 5 10 20 5 10 20 5 10 20

acl1 65331 85.1 96.0 99.8 93.5 97.8 99.9 93.8 97.7 99.7 92.1 98.6 98.7 72.6 86.2 95.1
acl2 96334 21.9 33.7 49.8 37.7 53.1 73.0 43.1 59.4 80.4 70.5 78.4 82.6 42.9 63.6 83.3
acl3 90208 56.4 77.5 85.8 73.9 89.9 97.7 75.7 91.3 97.6 72.9 82.1 86.2 49.8 67.2 83.5
acl4 84522 30.0 45.8 63.8 48.1 65.6 82.8 56.3 75.5 88.1 65.9 76.0 82.1 50.6 67.1 82.5
acl5 52240 13.5 25.8 46.4 33.5 54.1 72.4 47.1 68.4 85.4 88.4 98.2 100 76.0 90.4 98.7
fw1 165876 28.3 38.3 53.7 30.5 38.2 51.9 29.7 37.0 48.7 44.4 55.4 60.9 32.1 44.3 61.9
fw2 92730 61.5 81.5 83.2 84.3 86.3 87.9 80.9 87.5 92.7 40.5 46.3 49.3 73.7 89.8 98.5
fw3 128624 22.6 30.9 44.6 21.9 32.5 48.9 30.7 42.7 59.2 37.1 54.5 72.3 41.2 55.8 70.7
fw4 284747 28.0 41.0 48.1 51.2 53.0 54.6 51.6 62.9 74.7 13.4 17.4 23.3 31.5 44.8 61.4
fw5 106201 34.6 42.8 47.0 36.0 38.2 38.4 31.6 33.7 35.0 33.2 41.9 49.4 42.0 58.6 78.2
ipc1 67620 77.4 94.8 99.6 89.8 98.8 99.8 90.7 98.9 99.8 76.7 76.8 76.8 61.2 75.6 87.3
ipc2 50000 99.8 100 100 99.9 100 100 100 100 100 66.0 78.4 86.7 95.6 100 100

TABLE I
LPM RESULTS FOR DIFFERENT VALUES OF l AND β , COVERAGE %.

Memory expansion by 4 bits
l = 16 l = 24 l = 32

Rules β =5 10 20 β =5 10 20 β =5 10 20
acl1 65331 85.1 96.1 99.8 93.7 97.1 99.7 93.9 97.7 99.7
acl2 96334 22.6 34.2 50.0 39.5 54.5 74.5 45.5 61.3 82.4
acl3 90208 57.5 78.4 86.2 74.6 91.2 98.9 77.6 92.6 98.5
acl4 84522 30.1 46.1 64.3 49.4 66.8 83.8 59.1 78.5 90.3
acl5 52240 13.5 25.8 46.4 33.6 54.3 73.1 47.7 69.1 86.7
fw1 165876 28.4 38.4 53.9 30.7 38.5 50.9 29.6 36.5 48.4
fw2 92730 61.5 81.5 83.2 85.6 90.4 93.6 82.9 87.7 91.7
fw3 128624 22.8 31.2 44.8 22.1 32.8 49.4 31.8 43.3 59.4
fw4 284747 28.0 41.1 48.2 48.7 50.4 52.0 62.2 73.4 84.7
fw5 106201 34.6 42.8 47.0 36.0 38.2 38.4 32.2 33.9 35.1
ipc1 67620 77.6 96.2 99.4 89.1 98.4 99.5 91.1 99.3 99.9
ipc2 50000 99.8 100 100 100.0 100.0 100.0 100.0 100 100

Memory expansion by 8 bits
l = 16 l = 24 l = 32

Rules β =5 10 20 β =5 10 20 β =5 10 20
acl1 65331 85.1 96.1 99.8 93.7 97.1 99.7 93.9 97.9 99.9
acl2 96334 22.7 34.7 50.6 39.3 54.5 74.5 46.2 62.1 83.6
acl3 90208 57.5 78.5 86.6 75.3 90.8 97.3 78.3 95.4 99.0
acl4 84522 30.2 46.3 64.8 50.2 68.4 85.5 59.6 78.9 91.1
acl5 52240 13.5 25.8 46.4 33.6 54.3 73.1 47.7 69.1 86.7
fw1 165876 28.4 38.4 53.9 31.3 39.6 53.5 30.6 38.7 52.3
fw2 92730 61.5 81.5 83.2 94.9 98.9 99.9 94.2 99.3 100.0
fw3 128624 22.8 31.2 44.8 22.2 32.8 49.3 31.8 43.3 59.4
fw4 284747 28.0 41.1 48.2 48.7 50.4 52.0 62.4 74.2 86.3
fw5 106201 34.6 42.8 47.0 36.3 38.7 38.9 33.7 37.6 38.5
ipc1 67620 77.1 95.5 99.2 89.8 98.4 99.0 91.8 99.3 99.8
ipc2 50000 99.8 100 100 100.0 100.0 100.0 100.0 100 100

TABLE II
LPM RESULTS WITH BIT EXPANSION FOR DIFFERENT VALUES OF l AND β .

with real parameters. Each classifier in the tables below
has about 50,000 rules. The generated classifiers contained
range-based fields, so in order to convert and operate on
the entire multifield classifier we used the commonly used
SRGE encoding scheme based on Gray coding [25]. Our code
for processing and evaluating the classifiers is available at
GitHub [26]. We did not measure lookup times since our
approach serves as an abstract layer to find bit identities for
lookup, independently of the underlying LPM infrastructure.
Our evaluations are intended to validate the feasibility of the
proposed approach, so we also did not compare our implemen-
tations with, for instance, software-based solutions intended to
reduce size. We used four algorithms in tne evaluations: (1)
RD is a greedy algorithm from [14] that iteratively removes
bits that represent unique differences for the smallest number
of rule pairs, breaking ties by the share of ∗ bits; (2) RDexact

is the same but removes only non-exact bits and does not stop
until all bits are exact [14]; (3) RD-MC, our main heuristic,
and (4) RD-MC-EXP have been discussed in Section VI.

Table I shows the results of our proposed heuristics without
extra memory. We have covered five values of l: l = 16,
l = 24, l = 32, and l = 64 for the composition of RD
and LPM, and l = 104 which corresponds to “pure” LPM
with no width limit, and have computed the number of rules



covered by top β groups for three different practical values of
β: 5, 10, and 20. Note that for small values of l, the wider are
the filters the larger the groups become and the fewer groups
are needed; this is a property mostly inherited from the RD
part since it is easier to find disjoint rules when their filters
are wider. On the other hand, for extra large l it becomes
significantly harder to preserve prefix reorderability, and we
see that by the time we reach l = 104 the tension between
these two effects becomes evident: in some examples pure
LPM loses to RD-LPM composition for l = 32; in others,
vice versa. This effect is also illustrated on Fig. 4 that shows
rules coverage in more detail: we see that the coverage is far
from monotone in l. Another effect is that depending on the
LPM infrastructure implementation, wider groups (larger l)
may use significantly, sometimes exponentially more memory
in order to decrease lookup time [8], [9], so in reality a larger
number of more narrow groups may be preferable to a smaller
number of wider groups. In Table I we see that this kind of
tradeoff is also possible: e.g., for fw2 10 groups with l = 24
cover more rules than 5 groups with l = 32, and so on.
Table II shows the result with bit expansion for 4 and 8 bits.
We see that this new allotted memory has virtually no effect
in our example of practical classifiers at the level of β. The
effect here is as follows: algorithm min pmgr mstep attempts
to minimize the antichain size while trying to keep memory
requirements as low as possible. This means that, in practice,
min pmgr mstep does indeed significantly reduce the total
number of groups, but does so by merging small groups, and
they do not appear in the top 5-10 groups shown in Table II.

Figure 5 shows a comparison of the four algorithms in terms
of rule coverage for three characteristic examples. Again, we
see that the relative performance of algorithms highly depends
on the specific instance, but the RD-MC-EXP heuristic proves
to be most stable overall, across all examples. In all cases,
we see that the proposed algorithms provide huge practical
improvements in terms of TCAM size, covering, in most cases,
a vast majority of the input classifier with but a few groups.

IX. IMPLEMENTATION IN P4

We have implemented the proposed representations in the
commonly used domain-specific programming language P4
that implements match-action pipelines [20]. We used the
Behavioral Model Version 2 (BMV2) framework that allows
to implement a P4-programmable architecture as a virtual
software switch; BMV2 is coming with the SIMPLE SWITCH
target architecture [27]. However, the problem with P4 is that
one has to specify lookup tables, headers, etc. in advance,
and the actual table content is added separately at “run time”.
Fixing bit indices implementing rule- disjointness and prefix
reorderability before the actual table content is provided can
significantly degrade efficiency for some instances of classi-
fiers. To address this limitation, we extended the BMV2 table
filling interface with the optimization engine that is target-
independent; the only prerequisite is a P4 intermediate rep-
resentation in JSON and the actual data. The engine replaces
the original lookup table and its key structure specified in P4

with the equivalent representation based on data content, given
a target specific maximal number of groups. We have released
our implementation in open source [28].

X. RELATED WORK

Research towards efficient implementations of packet clas-
sifiers falls into two major categories: algorithmic solutions
(usually software based) and TCAM-based solutions; com-
prehensive surveys can be found in [29], [1]. Algorithmic
solutions mainly rely on one of three techniques: decision
trees, hashing, or coding-based compression. The works [30],
[12] suggest how to partition the multi-dimensional rule space.
Possible matching rules are found by tracing a path in a
decision tree. Techniques to balance the partition in each node
exist, but rule replication often cannot be avoided; see a related
approach in [31]. There is an inherent tradeoff between space
and time complexities in these approaches. Song and Turner’s
ABC algorithm for filter distribution offers higher throughput
with lower memory overhead and can tune the implementation
for better time complexity or better space complexity [32].
The works [33], [34] discuss hash-based solutions to match a
packet to its possible matching rules. Efficient coding-based
representations are shown in [35], [36]. TCAMs have no native
support for range representations, so range encoding encom-
pass an important direction in this domain [25], [37], [11].
Different approaches have been described to reduce number
of entries: removing redundancies [38], [17], applying block
permutations in the header space [39], transformations [13],
[16], [40]. In particular [14], [15], [18] considered representa-
tions based on rule disjointness that we compose with prefix-
reorderability to cut down classification width.

XI. CONCLUSION

We have proposed alternatives that allow to implement
ternary bit strings with general priorities on commodity LPM
infrastructure, completely transparently to its internals, while
removing or significantly reducing the need in TCAM. Our
approach is built around prefix reorderability, a novel structural
property of classifiers. We extend our results to classifiers
of arbitrary width by composing prefix reorderability with
rule disjointness. Feasibility of the proposed representations is
supported by evaluations on practical classifiers; in addition,
we release a P4 implementation of our transformations.
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